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1 Introduction

Logical systems are represented in LF by giving a full and faithful (adequate)
embedding of the deductive apparatus of the logic as canonical forms of certain
types and kinds in LF in specified contexts. The collection of contexts over which
the representation is adequate is called a world, because it provides generators
for the canonical forms in question. Transferring adequacy from one world to
another relies on the concept of subordination, which expresses the irrelevance
of any “extra” variables in the target world.

Given such a representation any metatheoretic property of the logic may
be stated and proved in terms of its representation as certain canonical forms.
The Twelf meta-theorem prover1 for LF supports mechanical verification of
Π2 (∀∃) sentences that quantify over canonical forms of specified types. The
proof of such a Π2 proposition may be seen as a totality proof for an associated
relation, with the universal variables designated as “inputs” and the existential
variables designated as “outputs”. Such totality proofs often take the form of a
lexicographic induction over the structure of various canonical forms.

The representation of a logic typically involves higher types of LF; this is
called higher-order abstract syntax. Exploiting the LF type structure typically
streamlines the presentation, but does not in any way inhibit the expressive
power of the Twelf theorem prover. This is because the theorem prover works
at the meta-level of LF by induction over the structure of canonical forms of
higher type.

It is frequently alleged that logical relations arguments cannot be formalized
in LF. This is not so; LF is capable of encoding nearly any logic in which a logic
relations argument might be expressed. What is true, however, is that the Twelf
meta-logic, being limited to Π2 sentences, cannot express meta-theorems whose
proof proceeds by logical relations. The reason is that the core idea of logical
relations is that the logical complexity of the theorem varies in proportion to

1By “Twelf meta-theorem prover” we refer to Twelf’s system for checking the totality of
meta-theorems. Often it is referred to as Twelf’s “totality checker,” but we refer to it as a
theorem prover in recognition of the fact that it is actually proving an interesting meta-logical
theorem (the totality of a higher-order logic program) in its own right. We also refer to it
in this manner in recognition that, like all automated theorem provers, there are limits to its
abilities. We are not referring to Schürmann’s automated system for meta-proof construction.

1



the complexity of the type — the property at higher types is of correspondingly
higher quantifier complexity. Since the Twelf meta-logic is restricted to Π2

sentences, it cannot express such arguments. But there is no obstacle of any
kind to using LF to formalize a logical relations proof that is constructed by
hand and then to use Twelf to check it.

2 Adequate Representations

Any means of mechanizing the metatheory of a logical system L using a meta-
logical system M is based on some notion of representation of L within M.
The deductive apparatus of L must be encoded within that of M in such a way
that all reasoning about L can be conducted by reasoning about its encoding
within M. For this to be possible the representation must be full and faithful,
or adequate, in the sense that it must be possible to isolate all and only those
constructs inM that represent constructs in L— to borrow an old catch-phrase,
the representation must permit “no junk” and “no confusion”.

A logical system L is represented in the LF λ-calculus by defining a com-
positional bijection between the objects of each syntactic class of L and the
canonical forms of a corresponding canonical type in LF . The canonical forms
are the “long” βη-normal forms of an LF type, which we regard as canoni-
cal representatives of αβη-equivalence classes. A compositional bijection is one
that commutes with substitution, whenever it is meaningful to ask that it do
so — namely, whenever there is a notion of “substitutable variable” amongst
the objects in a given syntactic class of L. Put in other terms, an adequate
representation must take account not just of theorems (“closed” objects), but
also consequence and generality (“open” objects).

The canonical forms of a type are determined by the constants and vari-
ables that may occur within them. The constants are determined by a signa-
ture declaring their types and kinds; the variables are determined by a context
declaring their types. The following judgements are inductively defined:

1. the canonical Kinds: Γ `Σ K ↓;

2. the canonical families of a canonical kind: Γ `Σ A ↓ K;

3. the canonical elements of a canonical type: Γ `Σ M ↓ A.

The definition of these judgements gives rise to the principal of structural in-
duction over canonical forms. This induction principle is often extended lexico-
graphically to tuples of canonical forms. Such reasoning amounts to transfinite
induction up to the ordinal ωω.

We may now make precise the methodology of representation of logical sys-
tems in LF . The representation of a logical system L in LF consists of a
signature Σ together with an encoding of the classes of objects of L as canonical
types and the elements of these classes as canonical terms of these types. But to
make this precise, we must specify the contexts over which the correspondences
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are specified so as to take account of open, as well as closed, objects. Thus, to
encode a logical system L, we specify

1. A signature, Σ, declaring primitive families of types and elements thereof;

2. For each class of objects of L,

(a) a world, W, a class of contexts over Σ specifying the degree of gen-
erality of the representation of that class of objects;

(b) for each context Γ ∈ W,

i. a canonical type Γ `Σ A ↓ type representing the class of objects
over the context Γ;

ii. a compositional bijection between the canonical forms Γ `Σ M ↓
A and the objects of the class represented by the canonical type
Γ `Σ A ↓ type.

As an example, let us consider the representation of the simply typed λ-
calculus and its associated β-reduction relation. Rather than specify base types,
we will instead consider types with free type variables. Here is the signature
specifying this system:2

% syntax of types
tp : type.
o : tp.
arr : tp -> tp -> tp.
% syntax of terms
tm : type.
lam : tp -> (tm -> tm) -> tm.
app : tm -> tm -> tm.
% typing judgement
of : tm -> tp -> type.
of lam : ({x:tm} of x T1 -> of (F x) T2) ->

of (lam T1 F) (arr T1 T2).
of app : of E1 (arr T2 T) -> of E2 T2 -> of (app E1 E2) T.
% reduction judgement
red : tm -> tm -> type.
red beta : red (app (lam T F) E) (F E).
red lam : ({x:tm} red (F x) (F’ x)) ->

red (lam T F) (lam T F’).
red app 1 : red E1 E1’ -> red (app E1 E2) (app E1’ E2).
red app 2 : red E2 E2’ -> red (app E1 E2) (app E1 E2’).

Here are the adequacy conditions for the representation based on this signature:
2We’ll use Twelf syntax for this.
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Class Type World
types tp empty
terms tm x1:tm, . . . , xn:tm
typ. deriv.’s ofE T x1:tm, d1:ofx1 T1, . . . , xn:tm, dn:ofxn Tn

red. deriv.’s redE1 E2 x1:tm, . . . , xn:tm

Notice that the worlds consists of blocks of declarations that follow a pattern
that may be easily specified using a regular expression. For example, in the case
of typing derivations, variables of type tm are paired up with variables standing
for typing derivations of these variables. We have suppressed the definition of
the compositional bijection between objects of a class and canonical forms of
the type representing that class.

Subordination Since the representation of different syntactic classes is ade-
quate with respect to different worlds, this raises the question of whether the
canonical forms of a type in one world, W1, can be transported to another world
W2. For this question to even make sense we must first of all require that the
relevant canonical type(s) in W1 remain types in W2. And then we ask whether
the canonical forms of any of these types are the same when viewed in world
W2 as they are when viewed in world W1. A minimum criterion is that every
context W2 be an extension of some context in W1, so that no canonical forms
are lost.

However, this is not enough, because we also need to know that, in the
extensions, no canonical forms are gained. For example, consider the type family
(judgement) of and the worlds:

W1 = x1:tm, d1:ofx1 T1, . . . xn:tm, dn:ofxn Tn

W2 = x1:tm, d1:ofx1 T1, d
′
1:ofx1 T ′

1, . . . xn:tm, dn:ofxn Tn, d′
n:ofxn T ′

n

The two worlds give very different notions of the typing judgement of, because
the latter provides for two typing assumptions for every term variable. Although
every canonical form in W1 is also a canonical form of W2, the latter provides
many additional and problematic canonical forms.

On the other hand, some extensions are not problematic. For example,
consider the type family tm and the worlds:

W1 = x1:tm, . . . xn:tm,
W2 = x1:tm, d1:ofx1 T1, . . . xn:tm, dn:ofxn Tn

Although W2 adds a number of new assumptions, none of these can contribute
to canonical forms of type tm. Thus, the two worlds provide exactly the same
canonical forms of type tm.

In the former example, the extra assumptions could contribute to the type
in question (of), and in the latter they could not. This notion is generalized as a
relation, called subordination, between type families. We say that a type family a
is subordinate to a type family b (written a � b), if a canonical form belonging to
family a can appear within a canonical form of family b. In the former example,
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of � of, so the additional assumptions are relevant (and problematic); but in
the latter, of 6� tm, so the additional assumptions are irrelevant.

In general, two worlds W1 and W2 are equivalent for the type family a when
for every Γ1 ∈ W1, there exists Γ2 ∈ W2 and an intermediate context Γ, such
that Γ is obtainable from both Γ1 and Γ2 by dropping irrelevant assumptions
(that is, assumptions of types not subordinate to a), and vice versa. Note that
world equivalence depends on the type family; worlds equivalent for one family
may not be equivalent for another.

3 Informal Metatheory

Given an adequate encoding of a logical system, we may use it to do metatheory
for that system by reasoning about canonical forms in certain worlds. An ex-
ample is the well-known subject reduction theorem for simply typed λ-calculus.

Theorem 1 (Subject Reduction)
For every context Γ = Γ1, . . . ,Γn such that each Γi (1 ≤ i ≤ n) has the form
xi:tm, di:ofxi Ti for some • `Σ Ti ↓ tp,

if Γ `Σ E1 ↓ tm and Γ `Σ E2 ↓ tm and • `Σ T ↓ tp, then

for every Γ `Σ U ↓ redE1 E2 and Γ `Σ V1 ↓ ofE1 T ,

there exists Γ `Σ V2 ↓ ofE2 T .

Proof: The proof proceeds by induction on the structure of the canonical
form U . We consider one case here to illustrate what is involved. Suppose
that U = red lam ([x:tm]U ′[x]). By inversion, E1 = lam ([x:tm]F1[x]) and
E2 = lam ([x:tm]F2[x]) and

Γ, x:exp `Σ U ′[x] ↓ redF1[x]F2[x].

By inversion, T = arrT1 T2, V1 = of lam ([x:tm] [d:ofxT1]V ′
1 [x, d]), and then

Γ, x:tm, d:ofxT1 `Σ V ′
1 [x, d] ↓ ofF1[x]T2.

By weakening, Γ, x:exp, d:ofxT1 `Σ U ′[x] ↓ redF1[x]F2[x]. Observe that
• `Σ T1 ↓ tp. Therefore Γ, x:tm d:ofxT1 is a suitable context for the inductive
hypothesis. Therefore, by induction,for som

Γ, x:tm, d:ofxT1 `Σ V ′
2 [x, d] ↓ ofF2[x]T2

for some V ′
2 [x, d]. Therefore,

Γ `Σ [x:tm] [d:ofxT1].V ′
2 [x, d] ↓ {x:tm} ofxT1 → ofF2[x]T2.

Hence,

Γ `Σ of lam ([x:tm] [d:ofxT1].V ′
2 [x, d]) ↓ of (lam ([x:tm]F2[x])) (arrT1 T2).
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Finally, note that lam ([x:tm]F2[x]) = E2 and that arrT1 T2 = T . So let V2 be
of lam ([x:tm] [d:ofxT1].V ′

2 [x, d]). �

It is important to note that the inductive hypothesis is conditional on a
context of the appropriate world. In the proof we must ensure that any context
used in the induction satisfies the world constraint appropriate to the theorem.

4 Formal Metatheory

The subject reduction theorem fits into the Π2 fragment of the informal met-
alogic used in its proof, and is therefore amenable to formalization in Twelf.
This is achieved by introducing a judgement form sr that relates canonical
forms representing reductions and typings in the manner described by the the-
orem. We then designate the mode of each argument position in this relation,
marking universally quantified positions as “input” (notated perversely, for his-
torical reasons, by a “+”) and the existentially quantified positions as “output”
(notated by a “-”). Finally, we ask that Twelf check the well-modedness and
totality of the so-designated relation sr using a specified pattern of induction.
If it succeeds, as it does here, the theorem is proved.

Here is an excerpt of the declarations required to carry out this process in
Twelf:

sr : red E1 E2 -> of E1 T -> of E2 T -> type.
%mode sr +D1 +D2 -D.

sr lam : sr (red lam U’) (of lam V1’) (of lam V2’)
<- ({x:tm} {d:of x T1}

sr (U’ x) (V1’ x d) (V2’ x d)).

... other cases ...

%block bind : some {t:tp} block {x:tm} {d:of x t}.
%worlds (bind) (sr ).
%total D (sr D ).

It is important to note that the statement of the subject reduction theorem,
when formalized in Twelf, consists of the relation sr, the specification of its
mode, and the specification of the applicable world. The proof of the subject
reduction theorem consists of the clauses defining the derivable instances of the
sr relation, together with an indication of the termination ordering used by the
totality checker. Thus, we are not treating meta-propositions as (LF) types,
nor proofs of meta-propositions as (LF) terms!3

3It should be possible, however, to regard the meta-logic underlying Twelf as a type system
based on a suitably strong theory of inductive definitions to support reasoning by lexicographic
induction over tuples of canonical forms of various LF types and kinds. It seems plausible
that CiC would be sufficient, but so may also some weaker systems of inductive reasoning.
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The %block directive indicates that the sr theorem should be checked to be
total in the world consisting of contexts made up of bind blocks (let us call this
the world Wbind). However, this does not mean that sr may be used only in
Wbind. In principle, it may be used in any world in which it may be determined
that sr is still total. If W is such a world, we say that Wbind subsumes W for
sr.

World subsumption is related to world equivalence for adequacy (discussed
earlier), but is not identical. In principle4 we say that the world W ′ subsumes
the world W for the meta-theorem a if for every context Γ ∈ W, there exists
Γ′ ∈ W ′, such that Γ′ is obtainable from Γ by dropping irrelevant assumptions
(that is, assumptions of types not subordinate to a).

This notion of world subsumption puts an upper limit on the portability
of sr. We may use sr in contexts outside of Wbind, provided that the context
changes cannot invalidate Twelf’s argument for the totality of sr. This can
happen when any assumptions expected by sr are dropped, and can also happen
when any relevant assumptions unexpected by sr are added.

This example illustrates the general pattern of using the Twelf meta-theorem
prover to check the proofs of Π2 sentences over canonical forms. Many meta-
theorems naturally fall into (or can be made to fall into) this class. Consequently,
we may use Twelf to check formally many such proofs.

However, since the Twelf meta-prover is limited to Π2 sentences, it is not
capable of verifying meta-theoretic arguments that make use of the method of
logical relations (also known as the “computability method”, “Tait’s method”,
and, in its most potent form, “Girard’s method”). The fundamental reason
for this is that the power of logical relations stems from associating a distinct
proposition to each type in such a way that as the type increases so does the
quantifier complexity of the proposition. This gives us appropriate additional
leverage at higher types sufficient to push through an induction on types to es-
tablish the theorem. However, since the Twelf meta-prover is resolutely “stuck”
at the Π2 level of the quantifier alternation hierarchy, there is no chance of using
it to verify such an argument.

This does not mean that logical relations arguments cannot be formalized in
Twelf! We may, if we wish, use Twelf to formalize the ambient meta-theory of
a logical relations argument (a fragment of set theory or higher-order logic, for
example), and to use Twelf to check every detail of the proof. Such a verification
must proceed entirely “by hand” in the sense that we must fully formalize the
meta-logical system and fully formalize the logical relations argument within it
in order to check the proof.

Finally, the limitation to transfinite induction up to ωω is occasionally an
obstacle in practice. It would be useful to enhance the expressive power of the
Twelf meta-logic to permit more complex forms of induction.

4At present, Twelf’s implementation of world subsumption is somewhere more limited than
this.
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