(* $Id: Height.thy,v 1.1 2006/06/01 12:40:22 urbanc Exp $ *) (* Simple, but artificial, problem suggested by D. Wang *) theory Height imports Lam_substs (* - inherit the type of alpha-equated lambda-terms, the iteration combinator for this type and the definition of capture-avoiding substitution (the iteration combinator is not yet derived automatically in the last stable version of the nominal package) - capture-avoiding substitution is written t[x::=t'] and is defined such that (Var y)[x::=t'] = (if x=y then t' else Var y) (App t1 t2)[x::=t'] = App (t1[x::=t']) (t2[x::=t']) y\x \ y\t2 \ (Lam [y].t)[x::=t'] = Lam [y].(t[x::=t']) *) begin text {* definition of the height-function by cases *} constdefs height_Var :: "name \ int" "height_Var \ \(a::name). 1" height_App :: "int \ int \ int" "height_App \ \n1 n2. (max n1 n2)+1" height_Lam :: "name \ int \ int" "height_Lam \ \(a::name) n. n+1" height :: "lam \ int" "height \ itfun height_Var height_App height_Lam" text {* show that height is a function *} lemma supp_height_Lam: shows "((supp height_Lam)::name set)={}" apply(simp add: height_Lam_def supp_def perm_fun_def perm_int_def) done lemma fin_supp_height: shows "finite ((supp (height_Var,height_App,height_Lam))::name set)" by (finite_guess add: height_Var_def height_App_def height_Lam_def perm_int_def fs_name1) lemma FCB_height_Lam: shows "\(a::name). a\height_Lam \ (\n. a\height_Lam a n)" apply(simp add: height_Lam_def fresh_def supp_def perm_fun_def perm_int_def) done text {* derive the characteristic equations for height from the iteration combinator *} lemma height_Var: shows "height (Var c) = 1" apply(simp add: height_def itfun_Var[OF fin_supp_height, OF FCB_height_Lam]) apply(simp add: height_Var_def) done lemma height_App: shows "height (App t1 t2) = (max (height t1) (height t2))+1" apply(simp add: height_def itfun_App[OF fin_supp_height, OF FCB_height_Lam]) apply(simp add: height_App_def) done lemma height_Lam: shows "height (Lam [a].t) = (height t)+1" apply(simp add: height_def) apply(rule trans) apply(rule itfun_Lam[OF fin_supp_height, OF FCB_height_Lam]) apply(simp add: fresh_def supp_prod supp_height_Lam) apply(simp add: supp_def height_Var_def height_App_def perm_fun_def perm_int_def) apply(simp add: height_Lam_def) done text {* add the characteristic equations of height to the simplifier *} declare height_Var[simp] height_App[simp] height_Lam[simp] text{* the next lemma is needed in the Var-case of the theorem *} lemma height_ge_one: shows "1 \ (height e)" by (nominal_induct e rule: lam.induct) (simp | arith)+ text {* unlike the proplem suggested by Wang, the theorem is formulated here entirely by using functions *} theorem height_subst: shows "height (e[x::=e']) \ (((height e) - 1) + (height e'))" proof (nominal_induct e avoiding: x e' rule: lam.induct) case (Var y) have "1 \ height e'" by (rule height_ge_one) then show "height (Var y[x::=e']) \ height (Var y) - 1 + height e'" by simp next case (Lam y e1) hence ih: "height (e1[x::=e']) \ (((height e1) - 1) + (height e'))" by simp moreover have fresh: "y\x" "y\e'" by fact ultimately show "height ((Lam [y].e1)[x::=e']) \ height (Lam [y].e1) - 1 + height e'" by simp next case (App e1 e2) hence ih1: "height (e1[x::=e']) \ (((height e1) - 1) + (height e'))" and ih2: "height (e2[x::=e']) \ (((height e2) - 1) + (height e'))" by simp_all then show "height ((App e1 e2)[x::=e']) \ height (App e1 e2) - 1 + height e'" by (simp, arith) qed end